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Abstract-Variations of stress and strain are commonly expressed by patterns of stress or strain trajectories: three 
mutually orthogonal families of continuous lines, parallel to maximum, intermediate and minimum stress or strain 
axes. It might be assumed that there are equivalent continuousprincipalsu$uces of stress or strain, for any state of 
continuously varying stress or strain. We demonstrate that this will not generally be the case for three-dimensionally 
varying states of stress or strain. 

Whether or not principal surfaces of stress or strain exist is governed by the abnorma/ily of the vectorfield of 
principal trajectories. We consider the Z vector fields for examples of many types of three-dimensional 
heterogeneous deformation, and show that most of these do not lead to definable principal XY strain surfaces. 
An alternative geometric test is presented, termed the continuity loop, for simply demonstrating the existence (or 
not) of principal surfaces, using geometrical and orientational information. 

It is important to the understanding of geological structures to know which kinds of heterogeneous deformation 
give rise to principal surfaces of stress or strain. We conclude with examples of structures which might be indicative 
of the absence of continuous principal surfaces of stress (segmented faults, echelon veins and dykes), a discussion of 
the implication for strain fabrics and foliations, and a warning that foliation trace trajectories on maps or sections 
may not necessarily indicate the existence of real foliation surfaces in three dimensions. 0 1997 Elsevier Science Ltd. 

INTRODUCTION 

The concepts of principal planes of stress and strain are 
important in structural geology, and figure in virtually all 
current text books in connection with fracture and fabric 
forming processes. Principal planes of stress are con- 
sidered to control the orientations of brittle structures 
and their associations: faults, joints, mineral veins, dykes 
and other igneous intrusions. Principal planes of strain 
are assumed to control ductile fabrics in rocks, with 
cleavages and foliations widely believed to form parallel 
to the XY principal plane (denoting strain ellipsoid axes, 
X> Y=-2). - - 

In states of locally or regionally varying stress or strain, 
indicated by curving stress or strain trajectories, principal 
planes can only be defined at a point. On a larger scale, 
they would be described as principal surfaces with 
expected curving form. It might be automatically 
assumed that for any family of continuously curving 
stress trajectories (fl,, 02, 03; compressive stress positive, 
with olla2>03) there is a related family of continuous 
curved principal ~~102, ~1203 and ~~63 surfaces. Likewise, a 
set of curving X, Y and Z strain trajectories might be 
assumed to have three associated curving XY, YZ and 
XZ surfaces, mutually orthogonal. This paper will show 
that such general assumptions are not correct. 

Mandl (1987) questioned the existence of continuous 
principal surfaces of stress, in connection with discontin- 

uous faults. Through examination of vector fields for 
non-uniform and non-plane stress, he demonstrated that 
there were states of three-dimensional heterogeneous 
stress which could not possess continuous principal 
surfaces. It followed that the associated Coulomb- 
Mohr shear fractures would not be continuous surfaces 
either. Mandl(l987) therefore concluded that for general 
variations in states of stress (i.e. non-plane stress and 
non-plane strain), faulting should generally be discontin- 
uous. He also noted that the same would be true of 
extensional fractures, for equivalent heterogeneous stress 
conditions. Mandl’s examples include torsion of a 
circular cylinder, screw dislocations and a depth-varying 
tectonic stress field. The latter, shown in Fig. 1, is 
characterized by a constant vertical principal stress 
(here al), and two horizontal principal stresses which 
rotate progressively with depth. A continuous principal 
c1c2 surface cannot be defined, as shown schematically 
by the separate ‘flags’ in Fig. l(a). It follows that the 
CoulombMohr fractures will not be continuous surfaces 
(Fig. 1 b), and Mandl proposed this as a mechanism for 
segmented normal faults of the kind discussed by Segall 
and Pollard (1980). 

Despite much current interest in fault geometry, 
including echelon and segmented faults (e.g. Peacock 
and Sanderson, 1991; Cartwright et al., 1995; Childs et 
al., 1996), Mandl’s explanation that discontinuous faults 
might occui for states of stress which do not have 
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a b 

Fig. 1. Example of an undefinable principal surface of stress: the ‘tectonic stress’ state of Mandl (1987, figs 3 & 4). (a) The 
vertical stress, here et, is constant, but the horizontal stresses progressively change and rotate with depth. A continuous O,O~ 
surface cannot be drawn. (b) Discontinuous faults (CoulombMohr shear fractures) according to Mandl(l987) for the stress 

field in (a). The fault ‘plane’ becomes echelon segments, upwards or downwards. 

continuous principal surfaces appears to have received 
little attention (Mandl, 1987). We have not found any 
specific attempts to prove or disprove Mandl’s conten- 
tion that shear fractures, tensile fractures and principal 
planes of stress must generally be discontinuous for non- 
uniform three-dimensional stress fields. 

The question of whether principal surfaces of stress 
and strain exist for particular types of geological 
deformation appears not to have been asked widely in 
structural geology. It has been known for more than a 
century, in the mechanics literature (Boussinesq, 1872; 
Love, 1920, p. 87), that orthogonal surfaces to curving 
trajectories are the exception, not the rule. Yet structural 
geologists familiar with three-dimensional geometry and 
complexly curved surfaces, and educated to consider 
fractures and fabrics as surfaces, might find it harder to 
accept that principal surfaces of stress and strain do not 
necessarily exist. This point also raises problems of 
definition. Should a deformation where continuous 
principal surfaces do not exist (e.g. Fig. 1) be considered 
to possess a segmented ‘discontinuous surface’? Or is no 
principal surface definable at all? The concept of a 
‘discontinuous surface’ could be misleading, as it causes 
attention to focus on the nature of the discontinuities or 
‘jumps’. Instead, we wish to focus attention primarily on 
the fact that there may be no de$nable surfaces perpendi- 
cular to a family of curving trajectories, whether the 
definition is mathematical or geometrical. 

Torsion is probably the simplest type of deformation 
where it can be demonstrated, purely from geometrical 
arguments, that principal stress and strain surfaces do 
not always exist. Torsion of a circular cylinder gives rise 
to cylindrical c103 surfaces (Fig. 2a). It might be 
imagined that the ~102 and ~203 ‘surfaces’ would be of 
continuous spiralling (helicoidal) form. This was shown 

by Mandl(l987) uot to be the case. No continuous crlo2 
and ~203 surfaces exist, and this can be demonstrated 
geometrically (Fig. 2) as follows. For torsion of an 
upright cylinder, the ~~102 and 02~3 planes at any point 
must maintain their f45” dips, and make &-45” traces 
(the CJ~ and g3 trajectories) on successively inward-nesting 
cylindrical (~~0~ surfaces. The supposed 0102 and a2a3 
‘surfaces’ must also contain the horizontal cylinder radii 
(a2), forming the the strike lines on the ‘surface’ (Fig. 2b); 
these need to radiate (upwards and downwards), while 
the dip,must remain constant, at 45”. This is physically 
impossible because a true continuous spiral or helicoid 
(such as a ‘screw-thread’ or a smoothed spiral staircase) 
only maintains its continuity by steepening its dip 
inwards, reaching vertical at the spiral-axis. Hence, for 
torsional deformation, two of the three principal planes 
of stress (and also strain) cannot be described as 
continuous surfaces. 

The starting point of our paper is Mandl’s claim that, 
for most cases of continuously varying three-dimen- 
sional stress or strain, there will not be continuous 
principal planes or surfaces (Mandl, 1987). This has 
significant implications for geological structures suppo- 
sedly associated with principal planes of stress and 
strain. It also raises questions about geological inter- 
pretations and extrapolations from two to three dimen- 
sions. In this paper, we develop two tests which can be 
applied to verify the existence or not of principal 
surfaces of stress or strain. The first is a mathematical 
test and concerns the patterns of three-dimensional 
orientations of principal axes (i.e. their vector fields). 
The second concerns geometry, and uses the orientations 
of surfaces or their traces. We then consider examples of 
three-dimensionally heterogeneous states of stress or 
strain, to see which might possess principal surfaces, and 
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a b 

Fig. 2. The example of torsion of a circular cylinder. (a) Principal 01 and ~a trajectories wind around the cylinder, always 
maintaining angles of *45” with the torsion plane (horizontal), and ez axes are always radial lines. (b) A continuous c,cz 

surface (or ~2~s surface) cannot be drawn or defined, as shown by the ‘broken’ effect. 

end with the implications for geological structures and 
fabrics. 

PROOF OF THE EXISTENCE OF PRINCIPAL 
SURFACES, USING VECTOR FIELDS 

In analyses of heterogeneous stress fields, surfaces 
which are everywhere orthogonal to a family of principal 
stress trajectories are known as the principal stress 
surfaces or isostatic surfaces (in older literature). Boussi- 
nesq (1872; see also Love, 1920, p. 87) pointed out that 
for three-dimensional stress patterns, the existence of 
isostatic surfaces is exceptional. From the point of view 
of structural geology, it is of interest to discover which 
deformations, and their configurations of stress or strain 
trajectories, can give rise to principal surfaces. This 

question was discussed by Bjdrgum (1951), Erickson 
(1960) and Mandl (1987), and we will follow their 
analyses. 

It is necessary to express principal trajectories as a 
vector$eld. The existence of surfaces which are orthogo- 
nal to a vector field is determined by an invariant 
property called the abnormality of the vector field. The 
abnormality, A, is defined as a scalar, which is derived 
from the dot product of the vector of the field v and 
another vector, the curl of that field, i.e.: 

A = v. curl v. 

Only for zero abnormality, A = 0, expressed as 

(1) 

v . curl v = 0 (2) 

is it possible to construct families of surfaces normal to 
the lines of the vector field v. 

The significance of curl v in equations (1) and (2) is best 
explained by considering v as a field of particle movement 
paths, rather than as a suite of stress or strain trajectories. 
In the context of this analogy, the curl describes the net 
rotation of the flow implied by the vector field. Curl v is 
the vector describing the axis and amount of the average 
rotation of all, radii of a small sphere embedded in the 
flow (Fig. 3a). The abnormality, A, being the dot product 
of two vectors (equation 1), will be zero when the vectors 
of the field are normal to the curl; in other words, there 
will be no component of curl in the direction of v. In these 
circumstances, the net rotation implied by neighbours to 
any vector line in the plane perpendicular to the latter will 
be zero (Fig. 3b). For this reason, the abnormality has 
been termed the torsion of neighbouring vector lines 
(Bjiirgum, 1951). Although individual vector lines may 
possess torsion (i.e. depart from a plane curve), the family 
of immediate neighbours to a given vector line must not 
show a net ‘coiling’ about the latter, if the abnormality is 
zero. Referring to Fig. 3(b), the coiling of neighbouring 
vector lines is expressed by considering a small disc of 
radius r and normal to a vector line v. At points such asp 
on the circumference of the disc, a plane can be taken 
which is parallel to both the vector line v and the disc’s 
tangent line. Within this plane, the angle 0 is defined as 
the angle between the projections of v and the neighbour- 

b 

Fig. 3. (a) Illustration of the vector field, v, and its curl. (b) The coiling of neighbouring vector lines can be considered in terms 
of a disc, radius r, normal to a vector line, Y. See text for full discussion. 
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ing vector line V’ which passes through p. If the net value 
of 0 for all points around the rim is zero, the vector field 
has zero abnormality (Bj6rgum, 195 1, p. 26). 

The essential property of a vector field controlling the 
existence of an orthogonal family of surfaces is that 
vectors are oriented at right angles to the curl, i.e. A = 0. 

This property is purely a feature of the geometry of the 
vector lines, and is independent of vector magnitudes. 
When considering whether or not the zero abnormality 
property exists for a given configuration of stress or 
strain trajectories, we can therefore replace the vector 
field, v, with a directionally similar field, t, made up of 
unit vectors. 

If a family of orthogonal surfaces exists, the field of 
unit vectors obeys the equation 

A = t . curl t = 0. (3) 

Written for a Cartesian x-y-z system, 

A = t, . (cur1 t), + fy . (cur1 t),: + tz . (curl t)Z 

= ty(6t,/6y - 6f,fbZ) (4) 

+ tJ6t,/6z - st,/sx> + tz@t,./6x - St,JSy). 

The conditions expressed in equations (3) and (4) will 
always be satisfied for a two-dimensional stress field in 
which o2 has a fixed orientation, as the directions of ~1 
and ~3 will everywhere be contained in one plane. This is 
shown by considering the 01~2 surface, and hence the 03 
unit vector, t, taking the x-z plane to be the plane of 
stress. We have the following requirements for the vector 
components and derivatives fort: 

t, = 0; 6f,/AZ = &,/6z = 0. (5) 

Hence it is found that equation (3) is satisfied. 
A vector field will thus always have orthogonal 

surfaces if there exists a coordinate system for which 

t, =f(x, Y)? t?, = g(x, y), t, = 0. (6) 

The field is described as plane if equation (6) applies in 
some rectangular coordinate system, or rotationally 
symmetric (or axially symmetric), if equation (6) applies 
in cylindrical coordinates (Erickson, 1960, p. 824). 

This vector field criterion for determining the existence 
of principal surfaces will be used for examples of 
heterogeneous deformation in a later section. 

GEOMETRIC TESTS OF CONTINUITY OF 
PRINCIPAL SURFACES 

Using orientational data: the continuity loop 

The test of principal surface continuity in the previous 
section supposes that the vector fields for stress or strain 
trajectories can be defined. While it is possible to write 
expressions for vector fields for certain types of deforma- 
tion (as will be given in the following section), the vector 

method may not be of much practical value for real 
geological data. Let us suppose that we have a series of 
strike and dip readings for a ‘surface’ which can be 
located in some geographical reference system: for 
example, a series of readings for a regional first cleavage 
on a map which includes topography. A simple geome- 
trical method can test whether such data (e.g. for a 
regionally curving cleavage) can be characterized by a 
continuous curved surface in three dimensions, or not. 

A geometrical property of all continuous surfaces (not 
just principal surfaces, as considered in this paper) can be 
described by the continuity loop (Fig. 4). In any three- 
dimensional block diagram, the traces of a continuous 
surface on the faces of the block will describe one or more 
continuous closed loops in three dimensions. We use a 
right-angled block, but the principle holds for any three- 
dimensional block shape. The type of loop(s) will depend 
on the surface curvature in relation to block size, ranging 
from a series of straight lines around the block for a 
planar surface (Fig. 4a), to several possible closed curved 
loops for doubly curving surfaces (e.g. Fig. 4b), to more 
complex shapes. The shape of the loops does not matter; 
the critical factor is that the starting and finishing points 
are the same (Fig. 4c), thus defining the continuity. 
Wherever the loop is not closed, and the starting and 
finishing points are not in the same place (e.g. Fig. 4d), a 
continuous surface cannot be defined. 

The success of this simple graphical method depends 
on having accurate orientational data for strike, dip and 
position, or traces on sections which allow us to construct 
a block. The simplest test is a block aligned in the 
horizontal and vertical (Fig. 4), with edges N-S and E- 
W, so that the top face will always show the strike trace. 
Apparent dips on the vertical faces may be determined by 
stereographic construction, but the vertical positions of 
curved surfaces may be more difficult to resolve. 
However, it may be surprisingly easy to show that a 
supposed surface cannot be continuous for a series of 
readings. We will later use this to test for principal surface 
continuity in ductile transpression, as described by Robin 
and Cruden (1994). 

Dupin’s theorem 

Where it can be shown from vector fields or continuity 
loops that continuous principal surfaces do exist, these 
are three families of mutually orthogonal principal 
surfaces (e.g. (~102, ~~203, 0103; or XY, YZ, XZ). What 
rules govern the geometry of these orthogonal principal 
surfaces? A theorem derived by the French mathemati- 
cian C. Dupin in the early 19th century (see Nutbourne 
and Martin, 1988, p. 181) states: [f‘ three fumilies qf 
surfaces meet orthogonally, the curves of intersection are 
lines of curvature on the surfaces. Relating this theorem to 
the principal planes of strain, the three families of 
orthogonal surfaces represent the XY, YZ and XZ 
surfaces (Fig. 5). We know that their mutual intersections 
must be the X, Y and Z principal strain trajectories. 
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Fig. 4. The continuity loop. For a continuous surface, its intersections 
(i.e. traces) around any arbitrary block diagram will be continuous. (a) 
The ‘loop’ for a plane. (b) Loops for an arbitrary doubly curving 
surface. (c) Example of a continuous loop: start = finish. (d) A ‘loop’ 
which does not close, indicating a discontinuous surface: start # finish: 

note gap between the two spots. 

According to Dupin’s theorem, these X, Y and 2 
trajectories must be principal lines of curvature on the 
principal surfaces. These lines of curvature can be called 
principal curvature trajectories (Fig. 5) because they track 
the local principal directions of curvature (Nutbourne 

and Martin, 1988, p. 125). 
Dupin’s theorem has important applications to princi- 

pal surfaces of stress and strain. Lisle (oral communica- 
tion, Tectonic Studies Group AGM 1994) proposed 
several uses of Dupin’s theorem for the solution of 
structural problems. For example, if sets of foliations 
and lineations in a mapped area are valid indicators of 
principal strain surfaces and strain trajectories, respec- 
tively, then the geometries of these structures must obey 
Dupin’s theorem. Thus, the direction of greatest stretch- 
ing (x) must always be parallel to one set of principal 
curvature trajectories on the foliation surfaces, and Y 
parallel to the other set. The potential applications of this 
theorem may not be as broad as we first thought, 
however. To be applied, it must first be demonstrated 
that all three mutually orthogonal surfaces do indeed 
exist. As discussed above, and in the next section, only 
special arrangements of the strain trajectories lead to the 
existence of such surfaces. We now consider a range of 
examples of geologically realistic three-dimensional 
deformations. 

EXAMPLES OF HETEROGENEOUS 
DEFORMATION IN THREE DIMENSIONS: THE 
EXISTENCE OR NOT OF PRINCIPAL SURFACES 

Virtually all geological deformation can be described 
as heterogeneous, on one scale or another. Furthermore, 

geological structures are solid three-dimensional fea- 
tures. Should it be assumed, therefore, that strain is in 
general heterogeneous in three dimensions? 

Most analytical and model studies simplify geological 
deformation to two dimensions, or consider the third 
dimension as uniform. This is understandable, first 
because the principles and mathematics become simpler, 
and second because the printed page forces us into two- 
dimensional views and representations. Examples of 
heterogeneous deformation in two dimensions (see Fig. 
6) include strain across shear zones (Ramsay and 
Graham, 1970), fanning of strain around fold hinges 
(Dieterich, 1969) or around initially cylindrical inclusions 
(Shimamoto, 1975) and generalized modelling of strain 
gradients (e.g. Cutler and Elliott, 1983; Hirsinger and 
Hobbs, 1983; Cobbold and Barbotin, 1988). All these 
patterns of heterogeneous strain possess principal sur- 
faces of strain because they are two dimensional, 
analogous to plane stress. The curving principal trajec- 
tory lines seen in the front planes of view in Fig. 6, and in 
successive parallel sections, are true traces of principal 
surfaces in three dimensions of cylindroidally curved 
form. They all have closed continuity loops. 

Treatments of heterogeneous deformation in all three 
dimensions are rare in the geological literature. Despite 
the fact that many regions of natural structures exhibit 
regional swings of fold axes, cleavages and stretching 
lineations, a wholly three-dimensional approach is 
conceptually difficult. It is more usual to consider three- 
dimensional variation as successive sections across a 
region, providing successive traces of structures and 
fabrics. This can be done on the small scale, too, as 
serial sections or thin sections. These sections are not 
principal sections, however, and therefore two-dimen- 
sional theory and modelling are not truly applicable. In 
any general three-dimensionally heterogeneous deforma- 
tion there is no single characteristic section which 
illustrates and characterizes the whole deformation. 

We will consider some types of three-dimensionally 
heterogeneous deformation, and the presence or absence 
of principal surfaces, in two ways. (1) By the vector field 
method, we require expressions for the orientations of 
principal strain axes in an x-y-z coordinate system. (2) 
By the continuity loop method, we require orientational 
data on supposed principal surfaces so that a block 
diagram and traces can be drawn. Most of our examples 
use the first method. 

Deformation induced by an inflating sphere or ballooning 
diapir 

This deformation imposes a spherically symmetric 
principal compression (a,) or shortening (Z), which is 
independent of the orientation of any particular Carte- 
sian coordinate frame. The treatments for stress and 
strain are equivalent. The case of rotational symmetry on 
the z coordinate axis has already been considered 
(equation (6), and it was shown that A = 0 and, therefore, 
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principal curvature 
trajectories on XY surface TY surface 

Fig. 5. Dupin’s theorem: the three families of principal surfaces (XY, 
YZ, XZ) are orthogonal, and their mutual intersections (X, Y, Z 

trajectories) are lines of principal curvature. 

that principal surfaces exist. Spherical symmetry, with 
interchangeability of x, y, z, is an even more special case 

than this, where 

StJSy = St,/Gz = &,/6x = 6t,/6y, etc., (7) 

so (see equation (4) abnormality A is always 0. Conse- 
quently, XY principal surfaces (here with X= Y) will exist 

for this deformation. 

Deformation induced by diapiric ascent of a sphere 

A theoretical analysis of this problem (Schmeling et al., 
1988) treats flow as rotationally symmetric (axisym- 
metric) about the z axis, which thus makes the x and y 
coordinates and components interchangeable again. As 
stated above, it has been shown that rotationally 
symmetric deformations satisfy equation (2) and there- 
fore possess principal surfaces. In this case, the XY 
surfaces might be conceived as onion-shaped or of 
conical form. 

Simple shear in three dimensions 

Simple shear sensu strict0 is a two-dimensional plane- 
strain deformation, regardless of whether the shear is 
uniform or heterogeneous (Fig. 7a). It follows that this 
will give rise to principal surfaces (e.g. Figure 6b). 
Nevertheless, we will provide proof, using vector algebra, 
to lay the foundations for ‘three-dimensional simple 
shear’, treated as Cases A and B below. 

For a simple shear in the x-z coordinate plane with 

Fig. 6. Traditional examples of heterogeneous deformation. (a) Heterogeneous simple shear and (b) its principal XY surfaces. 
Strain variation and XY surfaces around (c) folds and (d) inclusions. All these deformations are two-dimensional (plane), and 

the XY surfaces have continuous cylindroidal form. 
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shear direction, x, the vector field of finite shortening 
directions, Z, can be expressed by the unit vector field, t, 
with components: 

t, =fl(v)* ty =f2oJ), tz = 0. (8) 

Recalling the curl t components (equation (4) we have 

[curl t], = (St,/@ - &,/Liz) = 0 

[curl fly E (StJGz - &,/6x) = 0 (9) 

[curl t], = (St,/Sx - 6tJSy) = -Sfi(y)/Sy. 

The third term in the expression 

A = tx . (curl t), + tv . (curl t& + t, . (curl t), 

(equation 4) reduces to zero, because t, is zero. Therefore 
A = 0, proving the presence of XY surfaces perpendicular 
to the Z vectors. 

Case A: uniform shear with a changing shear direction. 

In physical terms, this is a shear zone which gives rise to X 
or Z strain axes inclined at constant angle to the (shear) 
coordinate plane (x-z), but the strain axes rotate and 
twist upwards and downwards in the y direction (Fig. 

a Simple shear with fixed shear direction 

Y 

2. constant y 3. varying y 

b Simple shear with variable shear direction 

C General deformation zone 

CASE C 
Fig. 7. Various types of simple shear in three dimensions. For all types 
the X-Z co-ordinate plane is the shear plane, and x is the shear direction. 
(a) Simple shear sense s!ricro, a plane strain. 1, Initial state. 2, Uniform 
shear (constant y). 3, Heterogeneous simple shear. (b) Simple shear with 
a changing shear direction. 1, Initial state. 2, Uniform shear, considered 
as Case A. 2, Heterogeneous shear, our Case B. (c) General deformation 
zone, Case C, equivalent to Case B + zone-parallel stretching. See text 

for discussion. 

7b). The components of the unit vector, t, for the Z axes 

are: 

t, =fi(_,v), ty = k, t* =jX.v). (10) 

Curl t has the components (see equation (4) or equation 

(9): 

[curl 4, = MA/Q 
[curl fly = 0 

[curl t], = -Sfi(y)/Sy. 

(11) 

However, equation (4) now does not reduce to A = 0, but 
gives 

So, for this example, A # 0 and continuous XY surfaces 
cannot be defined. This could also be demonstrated quite 
simply, by the ‘continuity loop’ method. 

Case B: heterogeneous shear with a changing shear 
direction. This is a more general type of shear zone (Fig. 
7b) which may be regarded as a three-dimensional 

version of the characteristic shear zone (Fig. 6a), but 
with a changing shear azimuth. It might be said that such 
a deformation is bound to contravene the terms for 
principal surface continuity as it is a more general version 
of Case A. Mathematically, we have: 

t, =fio, ty =f2oi), t, =j!G@). 

Curl t has the components: 

(13) 

[curl tl, = VAA/~Y 
[curl tly = 0 

[curl t], = -SfiCy)/Gy. 

(14) 

This gives rise to the same expression for A as Case A 
(equation (12), confirming that XY surfaces cannot be 
defined for this type of shear zone. 

It is clear from these two types of shear zones that it is 
the changing direction of shear across a zone, not the 
value or heterogeneity of the shear strain, which is the 
critical factor that defines the non-existence of contin- 
uous XY surfaces. The changing direction in three 
dimensions has a coiling torsional effect, leading to non- 
zero abnormality for the Z vector field. These types of 
shear zone would seem likely patterns of deformation for 
geological shear zones developed over time. Means (1984, 

1995) considered two models of evolution for shear zones 
in rock, where Type 1 zones widen with time and Type 2 
narrow with time. Now supposing there is a constant rate 
of shear affecting a progressively widening zone (as Type 
l), but also that the shear direction changes progressively 
with time, the result would be a shear zone like our Case 
B, above. We reiterate that such a shear zone would not 
have continuous definable XY surfaces of finite strain, 
and this will have implications for related fabrics, as 
discussed later. 
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General deformation zones-Case C shear zone 

The term ‘general shear zone’ has been used by 
Simpson and De Paor (1993) and others to mean a zone 
of combined simple shear and zone-parallel stretch (pure 
shear); or more generally, a combined simple shear, pure 
shear, dilation and rigid rotation. Despite the apparent 
generality, this is nevertheless an example of only two- 
dimensional deformation variation. We therefore prefer 
to use the term general deformation zone for our most 
general type of three-dimensional shear zone; termed 
Case C. This is a combination of pure shear and simple 
shear with changing orientation (Fig. 7c), equivalent to a 
Case B shear zone, with the addition of zone-parallel/ 
perpendicular stretching, and perhaps including volume 
change. The stretching (pure-shear) component will not 
be parallel to the shear direction, except locally. This type 
of deformation need not be considered a zone in the sense 
of a restricted band, but could be of broader extent. 

The vector components for Z strain axes for examples 
of this general deformation will not be presented. It is 
sufficient to establish that the vector curl components will 
be more complicated functions than those for the 
previous example (equations 11, 12 and 13), involving x, 
y and z terms, and therefore A #O. Compared to the 
previous example, the stretch component will clearly 
have an effect on the twisting nature of principal axes, but 
will not alter the geometric property: that continuous XY 
surfaces will not be definable. 

Three-dimensionalstrain refraction with viscosity variation 

The variation of stress and strain across layers with 
viscosity contrast, and where layering is oblique to far- 
field stress and strain in either two or three dimensions, 
has been modelled by Treagus (1981, 1983, 1988). The 
general form of this kind of deformation variation has 
been shown to be characterized by a combination of a 
layer-parallel simple shear of fixed direction, but inver- 
sely proportional to viscosity, and a homogeneous layer- 
parallel pure shear. For three-dimensional strain refrac- 
tion and variation, the two components do not share any 
of the same principal axes. Unlike the previous examples, 
where the simple-shear component had a progressive 
change in direction (Fig. 7b & c), here it is a combination 
of the different amounts of layer-parallel simple shear in 
different layers, and a constant pure-shear component 
(on different axes), that results in the three-dimensional 
twisting of principal strain axes (e.g. Treagus, 1988, fig. 

5). 
The sharp patterns of stress and strain refraction, 

modelled by Treagus (1988) for layered systems in 
oblique strain, is clearly a different scenario from the 
smoothly varying states of heterogeneous stress and 
strain, considered in the examples above. There geome- 
trical variations without any material properties were 
considered. However, where viscosity can be considered 
to vary smoothly across a bed, such as in a graded 

horizon or across a zone, then the deformation variation 
might then be modelled as smoothly varying. An example 
of this is shown in Fig. 8, which adapts the results of 
sharp strain refraction from Treagus (1988, fig. 5) to an 
imaginary graded unit with smoothly changing viscosity, 
decreasing upwards. It is clear that a smoothly curving 
XY surface can exist for two-dimensional strain refrac- 
tion (Fig. 8a), as already discussed for other examples 
(e.g. Fig. 6). The XY surface curves or refracts on an axis 
parallel to the intermediate strain axis, Y, and the X and 
Y axes are principal curvature trajectories, according to 
Dupin’s theorem. However, for a ‘bed’ oblique to all 
three far-field (and thus local) strain axes, as shown in 
Fig. 8(b), a continuous XYsurface cannot be defined. The 
supposed XY ‘surface’ can be represented schematically 
as a series of discontinuous strips, upwards, which have 
successive changes in intersection direction with bedding- 
parallel planes across the ‘graded unit’. However, this is 
not a real surface, as would be established by attempting 
to draw a closed ‘continuity loop’. It follows that a 
continuous refracting curved ‘cleavage’ should not be 
envisaged for this kind of three-dimensional deformation 
variation. 

Ductile transpression zones 

Transpression, a deformation which combines com- 
pression with transcurrent motion (Harland, 197 1; 
Sanderson and Marchini, 1984), is traditionally treated 
as a homogeneous deformation across a discrete zone. 
The zone is usually represented as vertical and the motion 
vector as horizontal. Robin and Cruden (1994) drew 
attention to the boundary and mechanical problems of 
this ideal transpression model (Fig. 9a) and proposed a 
model of ductile transpression (Fig. 9b) which is a 
heterogeneous deformation. However, unlike heteroge- 
neous simple shear zones, this transpressive zone has a 
uniform shear (‘trans’ component), and a heterogeneous 
pure shear (‘press’) which dies out to zero at the zone 
margin (Fig. 9b) (Robin and Cruden, 1994, fig. 6). 

In their study, Robin and Cruden (1994) provide rare 
information on truly three-dimensionally heterogeneous 
deformation. They show strain-rate trajectories on block 
diagrams and stereograms, including diagrams showing 
‘foliation’ traces (here the instantaneous plane of flatten- 
ing) (e.g. Fig. 9c & d). Robin and Cruden (1994) do not 
appear to question whether the instantaneous XY 
surfaces (‘foliation’) are continuous. We will test this in 
one of their examples (their fig. 8). Taking the traces, 
together with stereographic data (Fig. 9c & d) (and also 
P.-Y. Robin, personal communication 1996), we have 
attempted to construct a ‘continuity loop’ in Fig. 9(e), but 
find that no closed loop can be drawn from the data. 
Therefore the traces on the block diagram in Fig. 9(c) are 
not traces of continuous instantaneous XY surfaces. Any 
supposed foliation likewise cannot be considered as a 

continuous surface. 
This example has a strong transcurrent component 
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fold axis 

b 
fold axis 

Fig. 8. Strain variation and XY plane orientations in a schematic 
graded bed with smoothly changing viscosity, decreasing upwards, 
based on results in Treagus (1988). (a) Two-dimensional strain 
refraction, Y parallel to bedding. (b) Three-dimensional strain refrac- 
tion, with A’, Y and Z axes all oblique to bedding, a discontinuous XY 

surface and a changing XY-bedding intersection. 

cf= 0.1, where f = ‘press’/‘trans’; Robin and Cruden, 
1994), and the deformation is therefore less heteroge- 
neous than if f were a higher value (as it is the ‘press’ 
component that is inhomogeneous; Robin and Cruden, 
1994, fig. 6). The degree of discontinuity of principal 
surfaces might therefore be expected to be higher, where 
the ‘press’ component is greater. We consider the result in 
Fig. 9(e) sufficient to prove the case (for all f except 0 or 
co), that the ductile transpression model of Robin and 
Cruden (1994) will not generally give rise to continuous 
principal surfaces of stress or strain. This generality 
would appear to hold regardless of whether the ‘trans’ 
(shear) component is horizontal, as usually assumed for 
transpression, or oblique, as also considered in their 
analyses. If this type of transpression is considered as a 
more realistic model for geological deformations than the 
traditional homogeneous transpression of Sanderson and 
Marchini (1984) the implication is that the principal 
surfaces of stress and strain, and related structures and 
fabrics, should not be expected to be continuous surfaces. 

Torsional deformations 

Pure torsion was one of Mandl’s examples of a 
deformation with discontinuous principal surfaces of 
stress (Mandl, 1987). We expanded on this in the 
Introduction, and demonstrated that torsion gives rise 
to cylindrical 6103 surfaces, but that cricr2 and o2(~3 

surfaces (which might have been thought to be helicoidal) 
cannot be defined (Fig. 2b). In terms of strain, XY and 
YZ surfaces will not exist. 

The geometry and possible geological environments of 
helices and helicoids have recently been investigated by 
Fowler (1996). He gives an example of helicoidal cleavage 
traces from the Lachlan Fold Belt in Australia, and 
suggests a torsional origin. The cleavage trace data 
provided by Fowler (1996, figs 7-9) do not include 
depth information, and so do not lend themselves to the 
‘continuity loop’ test (Fig. 4; e.g. Fig. 9e). However, if the 
arcuate cleavage is indeed continuous, it would seem to 
disprove a torsional origin as torsion will not give rise to 
continuous XY surfaces. Alternatively, if the deforma- 
tion is torsional, the cleavage would be expected to be 
discontinuous ‘surfaces’; therefore the ‘traces’ shown by 
Fowler (1996) might be lines which are not traces of a real 
continuous cleavage surface in three dimensions. 

Stress and strain fields aroundfracture tips 

Since the time of the analysis of stresses around cracks 
by Griffith (1920) it has been recognized that flaws, cracks 
and through-going fractures (joints, faults) will give rise 
to complex heterogeneous stress fields in their vicinity 
(see Pollard and Segall, 1987). The nature of the regions 
of ‘stress disturbance’ which arise around flaws, or 
overlapping fractures, or as a result of specific motions 
on a fracture, is a vast field within fracture mechanics that 
we cannot attempt to cover here. Our point of interest is 
what the significance to fracture propagation might be of 
considering heterogeneous stress fields in three dimen- 
sions, compared to the traditional two-dimensional stress 
patterns derived by most of the theoretical or laboratory 
modelling. In these two-dimensional analyses, it is usual 
to see the fracture treated as a line and stress trajectories 
to be drawn in the plane of view, which is regarded as a 
principal plane (e.g. Thomas and Pollard, 1993). Yet if 
the fracture is a circular or elliptical crack propagating in 
two dimensions as a circle or ellipse (e.g. Willemse et al., 
1996), the full region of stress disturbance must be a 
heterogeneous stress field in three dimensions. The nature 
of this circular or elliptical annular region around a 
fracture tip-line will be a complex heterogeneous stress 
field, and must differ according to the type of fracture 
motion (Modes I, II or III; see Atkinson, 1987) and 
position with respect to the movement vector (e.g. frontal 
or lateral tip). We see no reason to suppose that the stress 
or strain vector fields for these regions will have ‘zero 
abnormality’ except, perhaps, locally. 

We suggest that the general case along most fracture 
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Fig. 9. The ductile transpression model. (a) Traditional (Sanderson and 
Marchini, 1984) transpression model and (b) the ductile transpression 
model, after Robin and Cruden (1994, fig. 1). (c) and (d) Example of 
ductile transpression, after Robin and Cruden (1994, fig. 8). (c) Block 
diagram (x, y, z co-ordinates) showing traces of ‘foliation’. (d) Poles for 
the ‘foliation’ for y (0 to + 1) and z (2, 4, 8). (e) Application of the 
continuity loop method for the block in (c) (taken from z = 2 to z = 8). 
Two different ‘loops’ are shown for different traces but both are open, 

showing that the ‘foliation’ cannot be a continuous surface. 

tips will be a three-dimensionally heterogeneous stress 
field which does not possess the property of definable 
principal surfaces. If this is indeed the case, it is difficult to 
explain how any fracture might propagate as a contin- 
uous plane or surface. 

DISCUSSION AND GEOLOGICAL 
APPLICATIONS 

Many types of geological structures are traditionally 
described as closely related to principal directions of 
stress or strain. Brittle fracture-related structures such as 
joints, veins and dykes are usually considered as tensile 
fractures parallel to glc2 surfaces, whereas faults are 
considered as oriented in the Mohr-Coulomb orientation 
(parallel to CJ~, acute to a,). Planar mineral fabrics, 
especially those arising from a single ‘first’ deformation, 

are generally equated to XY planes of strain, although 
not necessarily the total strain. We focus the discussion 
by considering examples of discontinuous brittle struc- 
tures, examining some of the problems in assessing the 
continuity of supposed planar fabrics, and ending with a 
discussion of whether continuous linear traces in two 
dimensions might give a false impression of continuity in 
three dimensions. 

Segmentedfaults and echelon cracks, veins and dykes 

The starting point to our paper was Mandl’s note 

(Mandl, 1987), itself apparently prompted by Segall and 
Pollard (1980) on discontinuous fauft zones. He proposed 
that a segmented fault could be explained in terms of 
discontinuous Coulomb (shear) fractures (see Fig. lb) 
arising under heterogeneous stress fields which do not 
possess continuous principal surfaces of stress. We have 
already noted in the Introduction (see earlier citations) 
the current interest in segmented faults and their 
importance in fault populations (see also Cowie et al., 

1996), but surprisingly little attention given to Mandl’s 
hypothesis. The three-dimensional heterogeneity of 
stress around fracture tips, in addition to the kind of 
regional stress variation considered by Mandl (see Fig. 
1), would seem to make discontinuous fracture propaga- 
tion a likely phenomenon. Understanding when and why 
faults may be segmented, and how faults may link into 
large through-going faults or fault zones, have far- 
reaching implications to the movement of fluids in the 
Earth’s crust and the locations of resulting economic 

resources. 
Joint surfaces are commonly shown with echelon 

segments in a ‘joint fringe’ (Suppe, 1985, p. 173; Price 
and Cosgrove, 1990, p. 46) (Fig. lOa). It is understood 
that this is a joint edge effect, but it is less clear whether 
this is a characteristic of all lateral edges of joints, or a 
result of stress disturbance as a joint meets a barrier such 
as a different lithological unit, as might be deduced from 
Fig. 10(a). In the context of this paper, the question is 
whether joint fringes are indicative of stress systems 
which do not possess continuous 0102 surfaces, or not. 
We leave this open. 

Mineral veins are commonly seen in echelon arrays 
when viewed in cross-section, and have been shown to 
have many of the same properties as echelon cracks 
(Nicholson and Pollard, 1985; Nicholson and Ejiofor, 
1987) (Fig. lob). While sigmoidal vein arrays may appear 
as conjugate zones in cross-section (e.g. Ramsay and 
Huber, 1987, session 26), for which a sense of shear might 
be deduced, treating sigmoidal vein arrays as two- 
dimensional linear markers in shear zones may belie 
their complex three-dimensional geometry. In many 
cases, veins of traditional echelon sectional appearance 
can be shown to be complex three-dimensional!y branch- 
ing solid bodies (Fig. lob), similar in geometry to other 
types of segmented fractures (cf. Figs 1 b and 1Oa & c). 

Zgneous dykes show similar features to mineral veins 
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b Strain fabrics: foliations or not? 

C 

stress direction 

Fig. 10. Example _. ^. 
discontinuous fractures and related structures. (a) 

Jomt frmge structures, after Suppe (1985, fig. 6-4). (b) Three- 
dimensional form of veins, drawn from collapsing serial sections of 
Nicholson and Ejiofor (1987, fig. 3). Note changes from echelon 
segments at the front to linked veins at the back. (c) Schematic 
representation of echelon dykes, from Suppe (1985, fig. 7-7), attributed 

to Delaney and Pollard (1981). 

propagation 
direction 

4 

dyke segm\ent 

0 

(Delaney and Pollard, 1981; Nicholson and Pollard, 
1985; Suppe, 1985, pp. 214-217) (Fig. 10~) because they, 
too, occupy tensile fractures. Sometimes all that is left of 
the original frontal array of dyke ‘fingers’ are angular 
wallrock protrusions or rafts in the dyke, marking 
remnant ‘bridges’ between the earlier dyke segments, or 
horn-like dyke margins (Nicholson and Pollard, 1985, 
fig. 4). 

If fractures, whether tensile or shear, commonly 
initiate as discontinuous cracks, and become linked only 

by subsequent cross-fracture, this implies that the 
orientation of the through-going (linked) fracture is not 

a reliable indicator of the principal stress orientations at 
the time of fracture initiation. A sequential history of 
fracture initiation and linkage would appear, from 
evidence of veins and dykes, to be more easily preserved 
by tensile fractures than shear fractures. The latter might 
obliterate the early fracture patterns by successive fault 
movements, perhaps only preserving earlier discontin- 
uous fractures as relict surfaces features such as ridges or 
grooves (Hancock and Barka, 1987). 

In earlier examples we considered a range of types of 
three-dimensionally heterogeneous strain, and found 
that for all but some special symmetric strain patterns, 
and plane strain, principal XY surfaces will not exist. 
What is the signifance of this for supposedly planar 
deformation fabrics such as cleavage, foliation and 
schistosity? 

Pencil cleavage is sometimes described as a weak 
incipient cleavage which combines properties of a 
bedding-parallel fabric with a weak tectonic fabric, and 
is sometimes considered indicative of a prolate strain (see 
Reks and Gray, 1982; Ramsay and Huber, 1983, p. 185; 
Durney and Kisch, 1994). We offer another possible 
explanation: that it forms under deformation conditions 
where XY ‘planes’ are not continuous surfaces. This 
origin might be indicated by a changing (curving) 
orientation of the ‘pencils’ (indicating locally heteroge- 
neous deformation), or the localization of the fabric at 
specific structural irregularities (e.g. in fold hinge regions 
or at structural terminations). 

Slaty cleavage in true slates has demonstrable planar 
fissility (e.g. in roofing slates), and in these rocks it has 
been long established that the cleavage is subparallel to 
the XY planes of strain (e.g. Siddans, 1972; Wood, 1974). 
Cleavage surfaces in slates can often display remarkable 
continuity, a feature closely linked to their economic 
value as a building material. This probably reflects 
uniform lithology and close to homogeneous deforma- 
tion: the opposite scenario from the heterogeneous three- 
dimensional deformation fields considered in this paper. 
Slate belts may thus provide examples where principal 
surfaces may be accurately described as principal planes 
over a reasonable scale of observation. 

Where cleavage transects .folds formed in the same 
deformation (see Treagus and Treagus, 198 1, 1992, and 
references therein), we suggest this is evidence of a more 
general form of three-dimensional deformation. All three 

principal strain axes are likely to be oblique to layering, 
refracting through different lithologies. For this kind of 
three-dimensional deformation we expect, from previous 
research (see Fig. 8b), the following structural associa- 
tions. (i) Cleavages do not have a constant cleavage- 
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bedding intersection around folds, or through successive 
beds. (ii) Stretching lineations are not perpendicular or 
parallel to fold axes and cleavage-bedding intersections. 
(iii) Cleavages transect folds. (iv) Cleavage refraction and 
fanning cannot be accurately represented by a contin- 
uous curving surface. 

We have shown, with a range of examples of three- 
dimensionally heterogeneous deformation, that these will 
not generally have continuous XY surfaces. The question 
therefore arises: are foliation surfaces for such deforma- 
tions continuous planes or surfaces at all? An accurate 
construction of the refracting or fanning fabric in block 
diagram form, and attempts to draw a continuity loop 
from cleavage traces (see Fig. 4) might allow us to 
distinguish true geometrically continuous fabric surfaces 
from ‘surfaces’ which might be considered only approxi- 
mately continuous over a particular scale of observation. 
Foliations related to general heterogeneous deformation 
might be found not to be definable continuous surfaces 
on a regional scale, yet could appear to be planar and 
continuous at the thin section, hand specimen or, even, 
outcrop scale. So it is possible that even where deforma- 
tion is macroscopically heterogeneous in three dimen- 
sions, and therefore does not have geometrically 

definable XY surfaces throughout the deformed region, 
the discontinuities will be small enough, or distributed as 
‘jumps’, so that more-or-less continuous planar fabrics 
may be seen at the microscopic to mesoscopic scale. 

Shear zones can develop a variety of complex struc- 
tures and fabrics. We consider the special S-C fabric 
(Berthe et al., 1979; Lister and Snoke, 1984; see also 
Passchier and Trouw, 1988, p. 113) which can develop in 
shear zones, particularly in crystalline rocks. The C- 
fabric (or C-fabric) is of shear-band type, generally 
picked out by planar minerals, whereas the S-fabric is 
given by deformed grain shapes, and may be assumed to 
indicate the maximum extension (x) in cross-section. The 
sense of S-C fabrics, in sections across shear zones 
parallel to lineation, makes these useful shear-sense 
indicators. However, these fabrics are often only poorly 
defined and are far from true planar fabrics, except in 
completely mylonitized rock where S and C become 
indistinguishable. Lin and Williams (1992) provide 
evidence that S-C fabrics may anastomose in three 
dimensions. If it is generally the case that fabrics in 
shear zones are not true continuously planar fabrics, a 
point originally made by Berthe et al. (1979), but are 
locally anastomosing planes or simply collections of 
stretched grains (i.e. linear not planar), there becomes 
no real problem with the expected non-existence of 
continuous fabrics in more complex three-dimensional 
shear zones considered in the earlier examples. The main 
distinction between an anastomosing S-C fabric in a 
traditional two-dimensional simple shear zone, and a 
non-planar fabric in a three-dimensional shear zone with 
a changing direction of shear, would be the progressive 
change in shear direction and stretching lineation across 
the zone for the latter. 

We have questioned a fundamental aspect of foliation 
surfaces by suggesting that these may not be continuous 
surfaces or planes in the rock at all! With the exception of 
true slates which cleave for considerable distances along 
the fabric, much of the observational data for cleavage, 
foliations and schistosities come from sections perpend- 
ular to supposed cleavage surfaces (e.g. the wealth of 
examples in Borradaile et al., 1982, chap. IV). Linear 
traces marked out by mineral alignment or pressure 
solution may first give the illusion of a continuous linear 
trace in a plane of section (e.g. thin section), and it may 
then be assumed without question that this is the trace of 
a continuous surface in three dimensions, even when the 
geometry may deny this possibility. We welcome com- 
ments on these controversial questions. 

Changing from two to three dimensions: ,fLom traces to 
surfaces? 

For many types of ‘planar’ geological structure, 
whether fractures or fabrics, the geological informa- 
tion is likely to be in the form of traces: on a map, in 
cross-section, from cut samples and thin sections. The 
procedure of mapping lithological contacts by linking 
adjacent exposures is sometimes applied to structures 
such as faults, dykes and even cleavage fabrics. The 
‘form mapping’ of cleavage often reveals important 
regional swings of cleavage, whether presumed origi- 
nal or due to later deformation. However, we are 
unaware of any questioning about whether a con- 
structed linear trace is necessarily indicative of a 
continuous surface. 

Stratigraphic horizons and bedding planes within these, 
shown by outcrop or ‘form surface’ traces on the map, 
must generally have three-dimensional continuity. Stra- 
tum contours should, in theory, be constructable. Do we 
wrongly assume that this is also the case for structures 
and fabrics? 

Fault lines on a map may generally be assumed to be 
traces of fault planes which go to some depth. Yet faults 
are commonly discontinuous, as discussed above, and so 
we must reject this as a general rule. Cleavage traces 
which are joined up as map trend-lines may not likewise 
represent continuous cleavage surfaces on the map scale. 
From successive map readings of strike/dip of first 
cleavage, it is easy to join up any series of strike bars 
into a ‘trend-line’, regardless of whether this is a trace of a 
real (continuous) surface. The most obvious example is 
where readings show changes in dip but no change in 
strike, leading to straight trend-lines simply representing 
discontinuous flaps (a 90”-rotated version of the flags in 
Fig. la). The important point is that continuous lines can 
easily be drawn on two-dimensional (sectional) surfaces, 
but this does not indicate that continuous surfaces can 
always be constructed in three dimensions. 

We thus conclude on a note of caution. Sheets of paper 
which represent regions of geology or cross-sections, and 
photographs or thin sections, together constitute the 
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main sources of data for geological structures. These may 
sometimes deceive the mind into simply projecting the 
two-dimensional data with ‘tunnel vision’ into three 
dimensions, so that all lines become continuous planes 
or surfaces where they may not be viable continuous 
surfaces at all. 

CONCLUSIONS 

(1) Three-dimensional variations of stress and strain, 
characterized by three families of curving stress or strain 
trajectories, will not generally possess definable curved 
principal surfaces of stress or strain. 

(2) Continuity of principal surfaces can be tested 
mathematically by considering the abnormality of the 
vector field, or geometrically using the continuity loop. 

(3) All two-dimensionally varying states of stress and 
strain have continuous principal surfaces. One family is 
planar; the other two are cylindrically curving, with lines 
of principal curvature parallel to principal axes. 

(4) Geological deformations of the following types 
will not give rise to continuous principal surfaces of stress 
and strain, and so continuous fracture or XY fabric 
surfaces should not be expected. 

(a) Simple shear with a changing direction of shear 
across a zone. 

(b) All three principal stresses or strains oblique to 
geological layering, with competence contrast. 

(c) Mutually oblique components of pure shear and 
simple shear, where one is heterogeneous. This is a 
generalized form of deformation, which includes (b), 
general deformation zones and ductile transpression. 

(d) Torsional deformation. 
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